genetic-images/report/report.org

92 lines
4.6 KiB
Org Mode
Raw Normal View History

#+TITLE: Création dimages par algorithme génétique avec référence
#+SUBTITLE: Rapport de projet
#+AUTHOR: Lucien Cartier-Tilet
#+EMAIL: phundrak@phundrak.fr
#+CREATOR: Lucien Cartier-Tilet
#+LANGUAGE: fr
#+LATEX_CLASS: article
#+LaTeX_CLASS_OPTIONS: [a4paper,twoside]
#+LATEX_HEADER: \usepackage{xltxtra,fontspec,xunicode}\usepackage[total={6.5in,9.5in}]{geometry}\setromanfont[Numbers=Lowercase]{Charis SIL}
#+LATEX_HEADER: \usepackage{xcolor} \usepackage{hyperref}
#+LATEX_HEADER: \hypersetup{colorlinks=true,linkbordercolor=red,linkcolor=blue,pdfborderstyle={/S/U/W 1}}
#+STARTUP: latexpreview
* Sujet
Le sujet de ce projet est la création dun logiciel pouvant recréer une image
fournie grâce à des générations aléatoires et successives de formes aux,
positions, couleurs et taille aléatoires. Lalgorithme commence par créer une
image vide aux dimensions identiques à limage de référence, puis applique une
de ces formes aléatoires. Si la ressemblance de limage ainsi générée augmente
par rapport à sa version précédente par rapport à limage de référence, alors
cette modification est conservée, sinon elle est annulée. Répéter jusquà
satisfaction.
* Les méthodes utilisées
Plusieurs approches au problème sont possibles, allant de la simple
implémentation naïve du problème à des moyen pouvant au moins décupler la
vitesse de génération de limage. Sauf indication contraire, jai utilisé dans
limplémentation de chaque méthode des carrés comme forme déléments appliqués
aléatoirement à limage.
Pour évaluer la ressemblance entre deux image, jévalue une distance euclidienne
entre le vecteur de leurs pixels qui peut se résumer à ceci :
#+begin_export latex
$$\sqrt{\sum_{i=0}^{n} V_{i}^{2}+W_{i}^{2}}$$
#+end_export
~V~ étant le vecteur de pixels de limage de référence, ~W~ étant le vecteur de
pixels de limage générée, et ~n~ la taille de ces deux vecteurs.
Les tests de temps sont réalisés sur un Thinkpad x220, disposant dun processeur
Intel® Core™ i5-2540M à 2.6GHz, composé de deux cœurs supportant chacun deux
threads, et de 4Go de RAM. Le programme est compilé avec les options
doptimisation ~-O3~ et ~-flto~.
Voici également ci-dessous la liste des options et arguments possibles
concernant lexécution du logiciel.
#+begin_src text
$ ./bin/genetic-image -h
Allowed options:
-h [ --help ] Display this help message
-i [ --input ] arg Input image
-o [ --output ] arg Image or video output path (default: input path +
"_output")
-m [ --method ] arg Method number to be used (default: 1)
-n [ --iterations ] arg Number of iterations (default: 5000)
-v [ --video ] Enable video output
#+end_src
** Méthode naïve
Jai tout dabord implémenté la méthode naïve afin davoir une référence en
matière de temps. Cette dernière est implémentée dans ~src/methods.cc~ avec la
fonction ~method1()~. Comme ce à quoi je mattendais, cette méthode de
génération dimages est très lente, principalement dû au fait que lalgorithme
en létat essaiera dappliquer des couleurs nexistant pas dans limage de
référence, voire complètement à lopposées de la palette de couleurs de limage
de référence.
Voici la ligne de commande utilisée depuis le répertoire ~build~ afin de pouvoir
obtenir un temps dexécution :
#+begin_src shell
perf stat -r nombreDExécutions -B ./bin/genetic-image \
-i ../img/mahakala-monochrome.jpg -o output.png -n 200 -m 1
#+end_src
| / | < | < |
| nombre ditérations réussies | nombre dexécutions | temps dexécution moyen |
|------------------------------+---------------------+-------------------------|
| 10 | 100 | 0.09447s (±0.02%) |
| 50 | 100 | 1.1331s (±2.85%) |
| 100 | 50 | |
| 200 | 20 | |
| 500 | 10 | |
| 1000 | 5 | |
Naturellement, la variation en temps dexécution croît en même temps que le
nombre daméliorations nécessaires à apporter à limage à améliorer, dû à la
nature aléatoire de lalgorithme. Cependant, on constate également une
croissance importante du temps dexécution suivant également ce nombre
ditérations réussies.