Lucien Cartier-Tilet
8f35b85ef1
This commit cleans up the source blocks of bin.org by removing the shebangs from the actual source blocks. They are now passed as header arguments, making the exported files automatically executable. This removes the need for the two functions that were in the Introduction header making tangled files executable or not.
1340 lines
44 KiB
Org Mode
1340 lines
44 KiB
Org Mode
#+TITLE: Executable scripts
|
||
#+setupfile: headers
|
||
#+OPTIONS: auto-id:t
|
||
#+HTML_HEAD_EXTRA: <meta name="description" content="Phundrak's i3 config" />
|
||
#+HTML_HEAD_EXTRA: <meta property="og:title" content="Phundrak's i3 config" />
|
||
#+HTML_HEAD_EXTRA: <meta property="og:description" content="Description of the i3 config file of Phundrak" />
|
||
#+PROPERTY: header-args :exports code
|
||
|
||
* Presentation
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Presentation-721f3cc4
|
||
:END:
|
||
This file will present all the executable scripts I wrote. It is also their
|
||
original source code, all the following code snippets are exported and tangled
|
||
from this file to the actual executables.
|
||
|
||
* 4chandl
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/4chandl
|
||
:CUSTOM_ID: 4chandl-21ff428f
|
||
:END:
|
||
Usage: =4chandl [ URL TO THREAD ]=
|
||
|
||
I made this small script to download the attached files of 4chan threads.
|
||
Let’s check if any arguments were passed to the executable. If none were
|
||
passed, the script should be aborted.
|
||
#+BEGIN_SRC fish
|
||
if ! count $argv > /dev/null
|
||
echo 'No URL specified! Give the URL to thread as the only argument.'
|
||
exit 1
|
||
end
|
||
#+END_SRC
|
||
|
||
Now, let’s store the regex we use to get the link to the attached files.
|
||
#+BEGIN_SRC fish
|
||
set regex_4cdn '\/\/is2\.4chan\.org\/[a-z]+\/[A-Za-z0-9]+\.[A-Za-z]{3,4}'
|
||
#+END_SRC
|
||
|
||
We’ll use a thread counter to get a visual indication on how the download is
|
||
going.
|
||
#+BEGIN_SRC fish
|
||
set thread_counter 1
|
||
#+END_SRC
|
||
|
||
Now, we will use each of the arguments passed as a URL to download the files
|
||
from.
|
||
#+BEGIN_SRC fish
|
||
for url in $argv
|
||
#+END_SRC
|
||
|
||
As a visual indicator, let’s get the amount of elements we are going to
|
||
download from the current thread and print it.
|
||
#+BEGIN_SRC fish
|
||
set file_total (curl -ks $url | grep -oE $regex_4cdn | uniq | wc -l)
|
||
echo total files to download in current thread: $file_total
|
||
#+END_SRC
|
||
|
||
Let’s set a file counter so we can visualize the download progress.
|
||
#+BEGIN_SRC fish
|
||
set file_counter 1
|
||
#+END_SRC
|
||
|
||
Now, let’s download each file from the current thread.
|
||
#+BEGIN_SRC fish
|
||
for image_url in (curl -k -s $url | grep -Eo $regex_4cdn | uniq | sed 's/^/https:/')
|
||
echo -n Downloading image $counter of $total...
|
||
wget --no-check-certificate -q -nc $image_url
|
||
echo ' Done (thread: $thread_counter/thread_total\tfile: $file_counter/file_total)'
|
||
set file_counter (math $file_counter + 1)
|
||
end
|
||
#+END_SRC
|
||
|
||
Let’s increment the thread counter.
|
||
#+BEGIN_SRC fish
|
||
set thread_counter (math $thread_counter + 1)
|
||
#+END_SRC
|
||
|
||
Let’s now close the for loop.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
* awiki
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/awiki
|
||
:CUSTOM_ID: awiki-7ac5e1d5
|
||
:END: ~awiki~ is a simple script used with ~rofi~ that relies on the ~arch-wiki-docs~ package in order to provide the user a way to quickly find
|
||
and display any English page from the Arch Wiki in a browser. The advantage of
|
||
using this over the ~wiki-search~ utility from the ~arch-wiki-lite~ package is
|
||
you get instant suggestion in rofi using fuzzy-search. The downside is rofi
|
||
will only help you find pages by their title, and it will not help you find
|
||
keywords in the content of said pages.
|
||
|
||
The first step is to create the list of all the pages that are currently
|
||
stored on disk. ~arch-wiki-docs~ stores them in ~/usr/share/doc/arch-wiki/html/en~. A simple ~ls~ piped in three ~sed~ will
|
||
give us a list of page titles. We then pipe that into rofi in dmenu mode in
|
||
order to choose the page we want to display. By the way, setting the location
|
||
of the HTML files will come in handy later.
|
||
#+BEGIN_SRC fish
|
||
set WLOCATION /usr/share/doc/arch-wiki/html/en/
|
||
set WPAGE (/bin/ls $WLOCATION | \
|
||
sed -e 's/_/ /g' -e 's/\.html$//' -e 's|.*/\(.*\)|\1|' | \
|
||
rofi -dmenu -p "Arch Wiki" -i | sed 's/ +/_/g')
|
||
#+END_SRC
|
||
|
||
Now, all I need to do is to send this list into rofi and tell it to open the
|
||
result with our favorite browser with ~xdg-open~.
|
||
#+BEGIN_SRC fish
|
||
xdg-open $WLOCATION$WPAGE.html
|
||
#+END_SRC
|
||
|
||
* Askpass
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/askpass
|
||
:CUSTOM_ID: Askpass-d0d7a8c0
|
||
:END:
|
||
Askpass is a simple script that invokes ~rofi~ as a way to get from a GUI the
|
||
user’s sudo password. It is inspired by [[https://github.com/ODEX-TOS/tools/blob/master/rofi/askpass][this original tool]], rewritten in fish
|
||
and with [[https://wiki.archlinux.org/index.php/Rofi][rofi]] support instead of [[https://wiki.archlinux.org/index.php/Dmenu][dmenu]]. As you can see, this is a oneliner if
|
||
we ignore the initial shebang. This executable is pointed at by the
|
||
#+BEGIN_SRC fish
|
||
rofi -dmenu -password -no-fixed-num-lines -p (printf $argv[1] | sed s/://)
|
||
#+END_SRC
|
||
|
||
* Backup
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/backup
|
||
:CUSTOM_ID: Backup-68c7c63e
|
||
:END: ~backup~ is a very simple, oneliner script that will create a local copy of a
|
||
file and add the date at which it was copied in the filename. You can see its
|
||
source code here:
|
||
#+BEGIN_SRC fish
|
||
cp -r $argv[1] $argv[1].bak.(date +"%Y%m%d%H%M%S")
|
||
#+END_SRC
|
||
|
||
* ConnectWifi
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/connect-wifi
|
||
:CUSTOM_ID: ConnectWifi-16e5e24a
|
||
:END: ~connect-wifi~ is a small utility tool that allows the user to connect to
|
||
available WiFi networks. The first thing to do is to select the WiFi we want
|
||
to connect to. We’ll use the ~nmcli c s~ command to get the list of the
|
||
available networks, and we’ll chose one with ~rofi~.
|
||
#+BEGIN_SRC fish
|
||
set SELECTEDWIFI (nmcli d w l | \
|
||
egrep -o '([0-9A-F]{2}:){5}[0-9A-F]{2}\s*(.*)Infra' | \
|
||
egrep -o '\s+(.*)\s+' | awk '{$1=$1}1' | \
|
||
rofi -dmenu -p "Select your WiFi network")
|
||
#+END_SRC
|
||
Now, if a network was selected, let’s attempt to connect to it. Otherwise,
|
||
let’s just send a notification no network was selected.
|
||
#+BEGIN_SRC fish
|
||
if test -z $SELECTEDWIFI
|
||
notify-send "No WiFi network selected" -u low && exit
|
||
end
|
||
nmcli c u $SELECTEDWIFI
|
||
#+END_SRC
|
||
|
||
** TODO fix it
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: ConnectWifi-fix_it-a4b11503
|
||
:END:
|
||
|
||
* Cppnew :noexport:
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle no
|
||
:CUSTOM_ID: Cppnew-964e697b
|
||
:END: =cppnew= is a small utility that helps you create a new C++ project. Several
|
||
templates are available, the default one using CMake, and three others that
|
||
are a bit more advances, based on:
|
||
- CMake + [[https://conan.io/][Conan]]
|
||
- [[https://mesonbuild.com/][Meson]] + [[https://ninja-build.org/][Ninja]]
|
||
- Meson + Ninja + Conan
|
||
There is also a default [[http://doxygen.nl/][Doxygen]] file included for your documentation, ready to
|
||
go. I even made it so that you can execute it as an executable file, like =./doc/Doxyfile= from the project root.
|
||
|
||
The choice is given to the user which of them to use with options that will be
|
||
given to =cppnew=.
|
||
|
||
First of all, if no arguments were passed, return an error.
|
||
#+begin_src fish
|
||
if ! count $argv >/dev/null
|
||
echo "Missing argument: PROJECT" && return -1
|
||
end
|
||
#+end_src
|
||
|
||
Now, let’s set a couple of variables which will prove useful later on when
|
||
trying to set up our project.
|
||
|
||
* Cnew
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/cnew
|
||
:CUSTOM_ID: Cnew-d9ec9cc4
|
||
:END: =cnew= is a small utility script similar to but simpler than cppnew that
|
||
creates a CMake template C project from the template that already exists in
|
||
[[file:~/dev/templateC][~/dev/templateC]]. If no argument was passed, display an error message and exit.
|
||
#+BEGIN_SRC fish
|
||
if ! count $argv > /dev/null
|
||
echo "Missing argument: PROJECT" && return -1
|
||
end
|
||
#+END_SRC
|
||
|
||
Pass the first argument to a switch statement.
|
||
#+BEGIN_SRC fish
|
||
switch "$argv[1]"
|
||
#+END_SRC
|
||
|
||
If the argument is =-h= or =--help=, then display the help message and exit
|
||
the script normally.
|
||
#+BEGIN_SRC fish
|
||
case -h --help
|
||
man ~/dev/fishfunctions/cnew.man
|
||
exit 0
|
||
#+END_SRC
|
||
|
||
Else, the argument is the name of the project the user wants to create.
|
||
#+BEGIN_SRC fish
|
||
case '*'
|
||
set -g project_name $argv[1]
|
||
#+END_SRC
|
||
|
||
Let’s close the switch statement.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
Now, let’s copy the template where the user is executing =cnew= from, give it
|
||
the name of the project and move to the project.
|
||
#+BEGIN_SRC fish
|
||
cp -r ~/dev/templateC $argv[1]
|
||
cd $argv[1]
|
||
#+END_SRC
|
||
|
||
The default files have a placeholder for the name of the project. Let’s
|
||
replace these placeholders with the project’s name.
|
||
#+BEGIN_SRC fish
|
||
sed -i "s/PROJECTNAME/$argv[1]/g" CMakeLists.txt
|
||
sed -i "s/PROJECTNAME/$argv[1]/g" README.org
|
||
sed -i "s/CPROJECTNAME/$argv[1]/g" doc/Doxyfile
|
||
#+END_SRC
|
||
|
||
Now, let’s create a git repository and initialize it.
|
||
#+BEGIN_SRC fish
|
||
git init
|
||
git add .
|
||
git commit -m "initial commit"
|
||
#+END_SRC
|
||
|
||
And we’re done!
|
||
|
||
* Dart Language Server
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/dart_language_server
|
||
:CUSTOM_ID: Dart_Language_Server-18c256b1
|
||
:END:
|
||
Spacemacs' recommendations on how to use Dart with LSP is outdated, since
|
||
[[https://github.com/natebosch/dart_language_server][=dart_language_server=]] is obsolete. As recommended by the repo owner, we
|
||
should launch instead the following code:
|
||
#+BEGIN_SRC fish
|
||
/usr/bin/dart $DART_SDK/snapshots/analysis_server.dart.snapshot --lsp
|
||
#+END_SRC
|
||
So, instead of using the obsolete executable, instead we will be calling the
|
||
analysis server as requested.
|
||
|
||
* Dmenu
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/dmenu
|
||
:CUSTOM_ID: Dmenu-527edf04
|
||
:END:
|
||
I wrote this very simple script in order to replace =dmenu= with rofi’s
|
||
emulation of dmenu, since I prefer rofi’s appearance. It basically calls
|
||
rofi’s dmenu emulation with the arguments initially passed to dmenu.
|
||
#+BEGIN_SRC fish
|
||
rofi -dmenu $argv
|
||
#+END_SRC
|
||
|
||
* Emacsmail
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/bin/bash" :tangle ~/.local/bin/emacsmail
|
||
:CUSTOM_ID: Emacsmail-afffb7cd
|
||
:END:
|
||
This short script is used in my =~/.local/share/applications/mu4e.desktop=
|
||
file in order to send to Emacs any ~mailto:~ requests made in my system.
|
||
#+BEGIN_SRC bash
|
||
emacsclient -c --eval "(browse-url-mail \"$@\")"
|
||
#+END_SRC
|
||
|
||
* Emoji picker
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/rofi-emoji
|
||
:CUSTOM_ID: Emoji_picker-a1c374ec
|
||
:END:
|
||
The emoji picker is a simple fish script that uses rofi and
|
||
[[file:~/.config/emoji.txt][~/.config/emoji.txt]] to provide a small, local search for emojis. Once the
|
||
emoji is selected, it is copied to the clipboard using =xclipboard=.
|
||
#+BEGIN_SRC fish
|
||
grep -v "#" ~/.config/emoji.txt | rofi -dmenu -p "Select emoji" -i | \
|
||
awk '{print $1}' | tr -d '\n' | xclip -selection clipboard
|
||
#+END_SRC
|
||
|
||
Also, let’s send a notification telling the user the emoji has been copied!
|
||
#+BEGIN_SRC fish
|
||
set emoji (xclip -o -selection clipboard | tr -d '\n')
|
||
test -z "$emoji" && notify-send "No emoji copied" -u low && exit
|
||
set -a emoji "copied to clipboard"
|
||
notify-send -u low $emoji
|
||
#+END_SRC
|
||
|
||
It is inspired from [[https://www.youtube.com/watch?v=UCEXY46t3OA][this video]] from [[https://lukesmith.xyz/][Luke Smith]], rewritten in Fish.
|
||
|
||
* Lock
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/lock
|
||
:CUSTOM_ID: Lock-635fcb38
|
||
:END: ~lock~ is a simple script that locks the screen with ~i3lock~ while setting as
|
||
the background image of the locked screen a corrupted screenshot of the screen
|
||
before it was locked.
|
||
#+BEGIN_SRC fish
|
||
set TMPBG /tmp/screen.png
|
||
scrot $TMPBG
|
||
corrupter -add 0 $TMPBG $TMPBG
|
||
i3lock -t -e -f -i $TMPBG
|
||
rm $TMPBG
|
||
#+END_SRC
|
||
|
||
* mp42webm
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/mp42webm
|
||
:CUSTOM_ID: mp42webm-aeacca58
|
||
:END:
|
||
This function allows me to convert easily an mp4 video to the webm format.
|
||
Nothing too fancy here.
|
||
#+BEGIN_SRC fish
|
||
ffmpeg -i $argv[1] -c:v libvpx -crf 10 -b:v 1M -c:a libvorbis $argv[1].webm
|
||
#+END_SRC
|
||
|
||
* pape-update
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/pape-update
|
||
:CUSTOM_ID: pape-update-bdecbadf
|
||
:END:
|
||
This little tool sets a random wallpaper using nitrogen.
|
||
#+BEGIN_SRC fish
|
||
set -l PAPESDIR ~/Pictures/Wallpapers
|
||
set -l PAPES (ls $PAPESDIR)
|
||
set -l PAPE $PAPESDIR/$PAPES[(random 1 (count $PAPES))]
|
||
for i in (seq (xrandr --current | grep ' connected' | wc -l))
|
||
nitrogen --set-zoom-fill $PAPE --head=(math "$i - 1") --save
|
||
end
|
||
#+END_SRC
|
||
|
||
* Pinfo :noexport:
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle no
|
||
:CUSTOM_ID: Pinfo-f3644596
|
||
:END: ~pinfo~ is a utility that shows system information
|
||
|
||
* Polybar-launch
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/polybar-launch
|
||
:CUSTOM_ID: Polybar-launch-36789edc
|
||
:END:
|
||
This scripts allows the user to kill polybar and relaunch it, or to simply
|
||
launch it if polybar isn’t launched yet. First thing to do is kill all polybar
|
||
processes.
|
||
#+BEGIN_SRC bash
|
||
killall -q polybar
|
||
#+END_SRC
|
||
|
||
Now we have to wait untill all polybar processes have been shut down.
|
||
#+BEGIN_SRC bash
|
||
while pgrep -u $UID -x polybar >/dev/null; do sleep 1; done
|
||
#+END_SRC
|
||
|
||
Now that our system isn’t running polybar anymore, we’ll launch it again on
|
||
all of our screens. By the way, I have two bars, so I’ll have to lauch them
|
||
both.
|
||
#+BEGIN_SRC bash
|
||
if type "xrandr"; then
|
||
for m in $(xrandr --query | grep " connected" | cut -d" " -f1); do
|
||
MONITOR=$m polybar --reload top &
|
||
MONITOR=$m polybar --reload bottom &
|
||
done
|
||
else
|
||
polybar --reload top &
|
||
polybar --reload bottom &
|
||
fi
|
||
#+END_SRC
|
||
|
||
And we’re done! Let’s just launch a notification polybar has been relaunched.
|
||
#+BEGIN_SRC bash
|
||
notify-send "Polybar restarted!" -a "polybar-launch"
|
||
#+END_SRC
|
||
|
||
* Rofi-mount
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/rofi-mount
|
||
:CUSTOM_ID: Rofi-mount-ebbebf68
|
||
:END: =rofimount= is a script inspired by [[https://github.com/ihebchagra/dotfiles/blob/master/.local/bin/dmount][this one]], based on dmenu, which
|
||
interactively asks the user what to mount, and where to mount it. What I did
|
||
was replace dmenu with rofi, and fix a couple of bugs I encountered in the
|
||
original script.
|
||
|
||
** Get the mountable elements
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Get_the_mountable_elements-24db7834
|
||
:END:
|
||
#+BEGIN_SRC fish
|
||
begin
|
||
#+END_SRC
|
||
What the script does first is detect everything that can be mounted. Between
|
||
a =begin= and =end=, let’s set =LFS= as a local variable. This si in order to
|
||
get sane variables in the current block.
|
||
#+BEGIN_SRC fish
|
||
set -l LFS
|
||
#+END_SRC
|
||
|
||
Now, let’s detect the amount of mountable Android filesystems, and if any are
|
||
detected, let’s read them into a global variable.
|
||
#+BEGIN_SRC fish
|
||
set -l a (math (jmtpfs -l | wc -l) - 2)
|
||
test $a -ge 0 && jmtpfs -l 2> /dev/null | tail -n $a | read -zg anddrives
|
||
#+END_SRC
|
||
|
||
We’ll do the same for external and internal drives and partitions that can be
|
||
mounted here.
|
||
#+BEGIN_SRC fish
|
||
lsblk -rpo "name,type,size,mountpoint" | \
|
||
awk '$2=="part"&&$4==""{printf "%s (%s)\n",$1,$3}' | \
|
||
read -zg usbdrives
|
||
#+END_SRC
|
||
|
||
Finally, we look for any CD drive that could be mounted on our device.
|
||
#+BEGIN_SRC fish
|
||
blkid /dev/sr0 | awk '{print $1}' | sed 's/://' | read -z cddrives
|
||
#+END_SRC
|
||
|
||
And that’s the end of our first block!
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
Alright, we’ll save what kind on drives we can mount in a temporary file
|
||
called =/tmp/drives=. We’ll make sure it’s blank by erasing it then creating
|
||
it again with =touch=, like so. The =-f= flag on =rm= is here so we get no
|
||
error if we try to delete a file that doesn’t exist (yet).
|
||
#+BEGIN_SRC fish
|
||
set -g TMPDRIVES /tmp/drives
|
||
rm -f $TMPDRIVES
|
||
touch $TMPDRIVES
|
||
#+END_SRC
|
||
|
||
Now, let’s write what type of drives we can mount in this temporary file.
|
||
#+BEGIN_SRC fish
|
||
test -n "$usbdrives" && echo "USB" >> $TMPDRIVES
|
||
test -n "$cddrives" && echo "CD" >> $TMPDRIVES
|
||
test -n "$anddrives" && echo "Android" >> $TMPDRIVES
|
||
#+END_SRC
|
||
|
||
Now, we want to declare where to look for mount directories. For now, we’ll
|
||
only look in =/media=, but you can add more if you wish.
|
||
#+BEGIN_SRC fish
|
||
set -g basemount /media
|
||
#+END_SRC
|
||
|
||
** Get the mount point
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Get_the_mount_point-6c4bac06
|
||
:END:
|
||
Now, let’s declare a function that will allow us to chose the drive we want
|
||
to mount.
|
||
#+BEGIN_SRC fish
|
||
function getmount
|
||
#+END_SRC
|
||
|
||
First, we want to get our mount point. We’ll run a =find= command on each of
|
||
the directories listed in =$basemount= to look for folders on which our drive
|
||
could be mounted. This list will be passed to rofi from which we will chose
|
||
our mount point.
|
||
#+BEGIN_SRC fish
|
||
set -g mp (for d in $basemount
|
||
find $d -maxdepth 5 -type d
|
||
end | rofi -dmenu -i -p 'Type in mount point.')
|
||
#+END_SRC
|
||
|
||
We should verify that something has been actually selected, otherwise we
|
||
should abort the script.
|
||
#+BEGIN_SRC fish
|
||
if test -z $mp || test $mp = ""
|
||
return 1
|
||
end
|
||
#+END_SRC
|
||
|
||
Now, if the selected mount point does not exist, we’ll ask the user whether
|
||
the directory should be created. If no, the script will abort. If yes, an
|
||
attempt will be made at creating the directory as the user; if that fails, a
|
||
new attempt will be made as sudo.
|
||
#+BEGIN_SRC fish
|
||
if test ! -d $mp
|
||
switch (printf "No\\nYes" | rofi -dmenu -i -p "$mp does not exist. Create it?")
|
||
case 'Yes'
|
||
mkdir -p $mp || sudo -A mkdir -p $mp
|
||
case '*'
|
||
return 1
|
||
end
|
||
end
|
||
#+END_SRC
|
||
|
||
Finally, let’s close the function
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Mount a USB drive, hard drive or partition
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Mount_a_USB_drive,_hard_drive_or_partition-f5431dbe
|
||
:END:
|
||
Alright, we want to mount a partition that answers by the name of =/dev/sdXX=, how do we do that? Let’s create first the function =mountusb=
|
||
that will take care of it for us.
|
||
#+BEGIN_SRC fish
|
||
function mountusb
|
||
#+END_SRC
|
||
|
||
Now, the first thing we want to do is select the partition we want to mount.
|
||
Remember, we stored those in =$usbdrives= earlier, so let’s pipe them into
|
||
rofi so we can chose from it. Also, =awk= will get their path in =/dev=.
|
||
#+BEGIN_SRC fish
|
||
set -g chosen (echo $usbdrives | \
|
||
rofi -dmenu -i -p "Mount which drive?" | \
|
||
awk '{print $1}')
|
||
#+END_SRC
|
||
|
||
As usual after a user selection, let’s verify something has actually been
|
||
selected. If not, let’s abort the script.
|
||
#+BEGIN_SRC fish
|
||
test -z $chosen && return 1
|
||
#+END_SRC
|
||
|
||
Now, let’s select the mount point of our partition. We’ll call the function =getmount= described in [[#Rofi-mount-Get_the_mount_point-6c4bac06][Get the mount point]] to select it.
|
||
#+BEGIN_SRC fish
|
||
getmount
|
||
#+END_SRC
|
||
|
||
Let’s verify the variable =mp= set in =getmount= is not empty, otherwise
|
||
abort the script.
|
||
#+BEGIN_SRC fish
|
||
test -z $mp && return 1
|
||
#+END_SRC
|
||
|
||
Now, let’s mount it! We’ll use a switch which will detect the filesystem used
|
||
so we know how to mount the partition.
|
||
#+BEGIN_SRC fish
|
||
switch (lsblk -no "fstype" $chosen)
|
||
#+END_SRC
|
||
|
||
We have two named case: =vfat= filesystems.
|
||
#+BEGIN_SRC fish
|
||
case "vfat"
|
||
sudo -A mount -t vfat $chosen $mp -o rw,umask=0000
|
||
#+END_SRC
|
||
|
||
And =ntfs= filesystems.
|
||
#+BEGIN_SRC fish
|
||
case "ntfs"
|
||
sudo -A mount -t ntfs $chosen $mp -o rw,umask=0000
|
||
#+END_SRC
|
||
|
||
Else, we’ll let =mount= determine which filesystem is used by the partition
|
||
(generally =ext4=).
|
||
#+BEGIN_SRC fish
|
||
case '*'
|
||
sudo -A mount $chosen $mp
|
||
#+END_SRC
|
||
|
||
We’ll also run a =chown= on this newly mounted filesystem so the user can
|
||
access it without any issues.
|
||
#+BEGIN_SRC fish
|
||
sudo -A chown -R $USER:(id -g $USER) $mp
|
||
#+END_SRC
|
||
|
||
Let’s close the switch block and send a notification the partition has been
|
||
mounted.
|
||
#+BEGIN_SRC fish
|
||
end && notify-send -a "dmount" "💻 USB mounting" "$chosen mounted to $mp."
|
||
#+END_SRC
|
||
|
||
And let’s close the function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Mount an Android device
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Mount_an_Android_device-5321f9cd
|
||
:END:
|
||
The function that manages to mount Android filesystems is =mountandroid=.
|
||
Let’s declare it.
|
||
#+BEGIN_SRC fish
|
||
function mountandroid -d "Mount an Android device"
|
||
#+END_SRC
|
||
|
||
We’ll select which Android we want to mount. We will be asked through rofi.
|
||
#+BEGIN_SRC fish
|
||
set chosen (echo $anddrives | rofi -dmenu -i -p "Which Android device?" | awk '{print $1 $2}' | sed 's/,$//')
|
||
#+END_SRC
|
||
|
||
Now, we need to get the bus of the Android device we want to mount. It will
|
||
be useful later, after we authorized mounting from our device, to get the
|
||
path to our partition.
|
||
#+BEGIN_SRC fish
|
||
set bus (echo $chosen | sed 's/,.*//')
|
||
#+END_SRC
|
||
|
||
Let’s temporarily mount our device.
|
||
#+BEGIN_SRC fish
|
||
jmtpfs -device=$chosen $mp
|
||
#+END_SRC
|
||
|
||
Now, we need to allow our computer to mount our Android device. Depending on
|
||
the Android version it is running on, we either need to specify our device is
|
||
USB connected in order to exchange files, or Android will explicitely ask us
|
||
if it is OK for our computer to access it. Let’s inform the user of that.
|
||
#+BEGIN_SRC fish
|
||
echo "OK" | \
|
||
rofi -dmenu -i -p "Press (Allow) on your phone screen, or set your USB settings to allow file transfert"
|
||
#+END_SRC
|
||
|
||
Now, let’s get the actual path of our Android filesystem we wish to mount,
|
||
and let’s unmount the previous temporary filesystem.
|
||
#+BEGIN_SRC fish
|
||
set newchosen (jmtpfs -l | grep $bus | awk '{print $1 $2}' | sed 's/,$//')
|
||
sudo -A umount $mp
|
||
#+END_SRC
|
||
|
||
Now we cam mount the new filesystem and send a notification if everything
|
||
went well.
|
||
#+BEGIN_SRC fish
|
||
jmtpfs -device=$newchosen $mp && \
|
||
notify-send -a "dmount" "🤖 Android Mounting" "Android device mounted to $mp."
|
||
#+END_SRC
|
||
|
||
And now, we can close our function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Mount a CD drive
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Mount_a_CD_drive-27278199
|
||
:END:
|
||
This part is way easier than the previous functions. As we will see, the
|
||
function =mountcd='s body is only three lines long. First, let’s declare the
|
||
function.
|
||
#+BEGIN_SRC fish
|
||
function mountcd
|
||
#+END_SRC
|
||
|
||
Now, let’s chose the CD drive we want to mount using =rofi=.
|
||
#+BEGIN_SRC fish
|
||
set chosen (echo $cddrives | rofi -dmenu -i -p "Which CD drive?")
|
||
#+END_SRC
|
||
|
||
We’ll also get the mountpoint thanks to the =getmount= function described
|
||
earlier.
|
||
#+BEGIN_SRC fish
|
||
getmount
|
||
#+END_SRC
|
||
|
||
And finally, let’s mount it and send the notification everything went well.
|
||
#+BEGIN_SRC fish
|
||
sudo -A mount $chosen $mp && \
|
||
notify-send -a "dmount" "💿 CD mounting" "$chosen mounted."
|
||
#+END_SRC
|
||
|
||
Finally, let’s close our function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Ask what type of drive we want to mount
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Ask_what_type_of_drive_we_want_to_mount-0c15cffa
|
||
:END:
|
||
The first thing we will be asked if different types of drives are detected is
|
||
which of these types the user wishes to mount. This is done with the function =asktype= which is declared below.
|
||
#+BEGIN_SRC fish
|
||
function asktype
|
||
#+END_SRC
|
||
|
||
We will use a switch statement which will use our anwser to rofi about what
|
||
we wish to mount.
|
||
#+BEGIN_SRC fish
|
||
switch (cat $TMPDRIVES | rofi -dmenu -i -p "Mount which drive?")
|
||
#+END_SRC
|
||
|
||
If we chose the option "USB", we’ll mount a hard drive, partition or USB
|
||
drive. In which case we’ll call the =mountusb= function.
|
||
#+BEGIN_SRC fish
|
||
case "USB"
|
||
mountusb
|
||
#+END_SRC
|
||
|
||
If we chose the "Android" option, the =mountandroid= function is called.
|
||
#+BEGIN_SRC fish
|
||
case "Android"
|
||
mountandroid
|
||
#+END_SRC
|
||
|
||
Else if we chose the "CD" option, we’ll call the =mountcd= function.
|
||
#+BEGIN_SRC fish
|
||
case "CD"
|
||
mountcd
|
||
#+END_SRC
|
||
If nothing is selected, the function will naturally exit. Now, let’s close
|
||
our switch statement and our function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
end
|
||
#+END_SRC
|
||
|
||
** Launch the mounting functions
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-mount-Launch_the_mounting_functions-218ad001
|
||
:END:
|
||
Now that we have declared our functions and set our variables, we’ll read the
|
||
temporary file described in [[#Rofi-mount-Get_the_mountable_elements-24db7834][Get the mountable elements]]. The amount of lines
|
||
is passed in a switch statement.
|
||
#+BEGIN_SRC fish
|
||
switch (wc -l < $TMPDRIVES)
|
||
#+END_SRC
|
||
|
||
If the file has no lines, i.e. it is empty, we have no mountable media. Let’s
|
||
inform our user this is the case.
|
||
#+BEGIN_SRC fish
|
||
case 0
|
||
notify-send "No USB drive or Android device or CD detected" -a "dmount"
|
||
#+END_SRC
|
||
|
||
If we only have one line, we have only one type of mountable media. We’ll
|
||
pass this line to a second switch statement.
|
||
#+BEGIN_SRC fish
|
||
case 1
|
||
switch (cat $TMPDRIVES)
|
||
#+END_SRC
|
||
This will allow the script to automatically detect what type of media it is,
|
||
and mount the corresponding function.
|
||
#+BEGIN_SRC fish
|
||
case "USB"
|
||
mountusb
|
||
case "Android"
|
||
mountandroid
|
||
case "CD"
|
||
mountCD
|
||
#+END_SRC
|
||
Let’s close this nested switch case.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
If we have more than one line, we’ll have to ask the user what type of media
|
||
they want to mount.
|
||
#+BEGIN_SRC fish
|
||
case '*'
|
||
asktype
|
||
#+END_SRC
|
||
|
||
Now, let’s end our switch statement!
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
Finally, we’ll delete our temporary file.
|
||
#+BEGIN_SRC fish
|
||
rm -f $TMPDRIVES
|
||
#+END_SRC
|
||
|
||
And with that, this is the end of our script!
|
||
|
||
* Rofi-pass
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/rofi-pass
|
||
:CUSTOM_ID: Rofi-pass-8335357f
|
||
:END: =rofi-pass= is a simple utility that gets a password stored in the [[https://www.passwordstore.org/][=pass=]]
|
||
password manager with rofi as its interface, and then stores the password in
|
||
the clipboard.
|
||
|
||
Let’s parse all the arguments passed to the script. If one of them is =--type=, =-t= or =type=, the script will attempt to type the password to the
|
||
text area already selected without pasting the password to the clipboard.
|
||
#+BEGIN_SRC fish
|
||
for arg in $argv
|
||
switch $arg
|
||
case '--type' '-t' 'type'
|
||
set -g TYPE "yes"
|
||
case '*'
|
||
printf 'Unknown argument: %s\n.' $arg
|
||
exit 1
|
||
end
|
||
end
|
||
#+END_SRC
|
||
|
||
Now, let’s get the list of the passwords that exist in our =pass= repository.
|
||
#+BEGIN_SRC fish
|
||
set passwords (find $HOME/.password-store -type f -name "*.gpg" | \
|
||
string replace -r ".*.password-store/" "" | \
|
||
string replace -r ".gpg" "" | sort)
|
||
#+END_SRC
|
||
|
||
Let the user choose which password they wish to select.
|
||
#+BEGIN_SRC fish
|
||
set password (for elem in $passwords
|
||
echo $elem
|
||
end | rofi -dmenu -i -p "Select your password")
|
||
#+END_SRC
|
||
|
||
Let’s verify we actually selected a password and not just exited. If no
|
||
password was selected, let’s simply exit the script.
|
||
#+BEGIN_SRC fish
|
||
if test -z $password
|
||
exit
|
||
end
|
||
#+END_SRC
|
||
|
||
Depending on the arguments passed earlier, we might want some different
|
||
behavior.
|
||
#+BEGIN_SRC fish :noweb yes
|
||
if test $TYPE = "yes"
|
||
<<rofi-pass-type>>
|
||
else
|
||
<<rofi-pass-copy>>
|
||
end
|
||
#+END_SRC
|
||
|
||
The default behavior is to copy the password to the clipboard for 45 seconds,
|
||
so let’s do that.
|
||
#+NAME: rofi-pass-copy
|
||
#+BEGIN_SRC fish :noweb yes :tangle no
|
||
pass show -c $password 2> /dev/null
|
||
#+END_SRC
|
||
|
||
Else, if we passed =--type=, =-t= or =type= as an argument of the script, we
|
||
want it to attempt to type our password in the currently selected text input.
|
||
Let’s do that.
|
||
#+NAME: rofi-pass-type
|
||
#+BEGIN_SRC fish :noweb yes :tangle no
|
||
set -l IFS
|
||
<<rofi-pass-type-get-password>>
|
||
printf %s $pass | xvkbd -file -
|
||
#+END_SRC
|
||
|
||
To correctly get the password from =pass=, we need to parse the output and
|
||
only get the first line, hence the following command.
|
||
#+NAME: rofi-pass-type-get-password
|
||
#+BEGIN_SRC fish :tangle no
|
||
set pass (pass show $password | string split -n \n)[1]
|
||
#+END_SRC
|
||
|
||
* Rofi-umount
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/rofi-umount
|
||
:CUSTOM_ID: Rofi-umount-ddde1667
|
||
:END: =rofiumount= is the counterpart of =rofimount= for unmounting our mounted
|
||
partitions.
|
||
|
||
** Get the unmountable drives
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-umount-Get_the_unmountable_drives-89c71040
|
||
:END:
|
||
First, we will need to list all the drives that can be safely unmounted.
|
||
Let’s run this.
|
||
#+BEGIN_SRC fish
|
||
set -g drives (lsblk -nrpo "name,type,size,mountpoint" | \
|
||
awk '$2=="part"&&$4!~/\/boot|\/home$|SWAP/&&length($4)>1{printf "%s (%s)\n",$4,$3}')
|
||
#+END_SRC
|
||
|
||
Now, let’s get the android devices that are mounted.
|
||
#+BEGIN_SRC fish
|
||
set -g androids (awk '/jmtpfs/ {print $2}' /etc/mtab)
|
||
#+END_SRC
|
||
|
||
And let’s get the CD drives that are mounted.
|
||
#+BEGIN_SRC fish
|
||
set -g cds (awk '/sr0/ {print $2}' /etc/mtab)
|
||
#+END_SRC
|
||
|
||
We’ll store all of our information in a temporary file, =/tmp/undrives=.
|
||
#+BEGIN_SRC fish
|
||
set -g undrivefile /tmp/undrives
|
||
#+END_SRC
|
||
|
||
Let’s make sure we begin with a clean, empty file.
|
||
#+BEGIN_SRC fish
|
||
rm -f $undrivefile
|
||
touch $undrivefile
|
||
#+END_SRC
|
||
|
||
Depending on if the related variables are set, write the different types of
|
||
mounted drives in the temporary file.
|
||
#+BEGIN_SRC fish
|
||
test -n "$drives" && echo "USB" >> $undrivefile
|
||
test -n "$cds" && echo "CD" >> $undrivefile
|
||
test -n "$androids" && echo "Android" >> $undrivefile
|
||
#+END_SRC
|
||
|
||
** Unmount disk partitions
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-umount-Unmount_disk_partitions-0d425a47
|
||
:END:
|
||
The function =unmountusb= will take care of unmounting any drive we can
|
||
safely unmount. First, let’s declare the function.
|
||
#+BEGIN_SRC fish
|
||
function unmountusb
|
||
#+END_SRC
|
||
|
||
Let’s chose the drive to unmount with rofi.
|
||
#+BEGIN_SRC fish
|
||
set chosen (echo $drives | \
|
||
rofi -dmenu -i -p "Unmount which drive?" | \
|
||
awk '{print $1}')
|
||
#+END_SRC
|
||
|
||
Let’s verify if the user actually selected any drive. If no, let’s abort the
|
||
script.
|
||
#+BEGIN_SRC fish
|
||
test -z "$chosen" && exit 0
|
||
#+END_SRC
|
||
|
||
Now, let’s unmount the chosen drive and send a notification if it has been
|
||
done.
|
||
#+BEGIN_SRC fish
|
||
sudo -A umount $chosen && \
|
||
notify-send "💻 USB unmounting" "$chosen unmounted." -a "dumount"
|
||
#+END_SRC
|
||
|
||
Now, let’s close the function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Unmount Android device
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-umount-Unmount_Android_device-ae1d5904
|
||
:END:
|
||
The function =unmountandroid= will take care of unmounting any mounted
|
||
Android device. First, let’s declare our function.
|
||
#+BEGIN_SRC fish
|
||
function unmountandroid
|
||
#+END_SRC
|
||
|
||
Let the user choose which Android device to unmount.
|
||
#+BEGIN_SRC fish
|
||
set chosen (echo $androids | rofi -dmenu -i -p "Unmount which device?")
|
||
#+END_SRC
|
||
|
||
We’ll verify the user chose any device.
|
||
#+BEGIN_SRC fish
|
||
test -z "$chosen" && exit 0
|
||
#+END_SRC
|
||
|
||
If a device has been chosen, let’s unmount it and send a notification it has
|
||
been successfuly unmounted.
|
||
#+BEGIN_SRC fish
|
||
sudo -A umount -l $chosen && \
|
||
notify-send "🤖 Android unmounting" "$chosen unmounted." -a "dumount"
|
||
#+END_SRC
|
||
|
||
Finally, let’s close the function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Unmount CD drive
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-umount-Unmount_CD_drive-369a2f61
|
||
:END: =unmountcd= will take care of unmounting any mounted CD drive. Let’s declare
|
||
this function.
|
||
#+BEGIN_SRC fish
|
||
function unmountcd
|
||
#+END_SRC
|
||
|
||
As before, let the user chose which CD drive to unmount.
|
||
#+BEGIN_SRC fish
|
||
set chosen (echo "$cds" | rofi -dmenu -i -p "Unmount which CD?")
|
||
#+END_SRC
|
||
|
||
We’ll verify the user chose any device.
|
||
#+BEGIN_SRC fish
|
||
test -z "$chosen" && exit 0
|
||
#+END_SRC
|
||
|
||
If a drive has been chosen, let’s unmount it and send a notification it has
|
||
been successfuly unmounted.
|
||
#+BEGIN_SRC fish
|
||
sudo -A umount -l $chosen && \
|
||
notify-send "💿 CD unmounting" "$chosen unmounted." -a "dumount"
|
||
#+END_SRC
|
||
|
||
Now, let’s close the function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Ask what type of drive to unmount
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-umount-Ask_what_type_of_drive_to_unmount-6287af48
|
||
:END:
|
||
If several types of unmountable drives are available, let’s ask the user
|
||
which type to unmount based on the content of the temporary file declared in
|
||
[[#Rofi-umount-Get_the_unmountable_drives-89c71040][Get the unmountable drives]]. First, let’s declare the function.
|
||
#+BEGIN_SRC fish
|
||
function asktype
|
||
#+END_SRC
|
||
|
||
Let’s create a switch statement to which will be passed the selection of the
|
||
user from rofi.
|
||
#+BEGIN_SRC fish
|
||
switch (cat $undrivefile | rofi -dmenu -i -p "Unmount which type of device?")
|
||
#+END_SRC
|
||
|
||
Three types of values can be returned: "USB", "CD", or "Android". These
|
||
values will be used to launch their corresponding function.
|
||
#+BEGIN_SRC fish
|
||
case 'USB'
|
||
unmountusb
|
||
case 'CD'
|
||
unmountcd
|
||
case 'Android'
|
||
unmountandroid
|
||
#+END_SRC
|
||
|
||
Let’s close the switch statement.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
Let’s now close the function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Launch the unmounting functions
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Rofi-umount-Launch_the_unmounting_functions-7c48a928
|
||
:END:
|
||
Now back to the body of our script, let’s input in a switch case the number
|
||
of lines contained in our temporary file.
|
||
#+BEGIN_SRC fish
|
||
switch (wc -l < $undrivefile)
|
||
#+END_SRC
|
||
|
||
If the file containes no lines. i.e. it is empty, nothing is to be unmounted.
|
||
Let’s inform the user of that.
|
||
#+BEGIN_SRC fish
|
||
case 0
|
||
notify-send "No USB drive or Android device or CD to unmount" -a "dumount"
|
||
#+END_SRC
|
||
|
||
Else, if there is only one type of drive, we’ll automatically let our script
|
||
choose based on the content of this sole line.
|
||
#+BEGIN_SRC fish
|
||
case 1
|
||
switch (cat $undrivefile)
|
||
case 'USB'
|
||
unmountusb
|
||
case 'CD'
|
||
unmountcd
|
||
case 'Android'
|
||
unmountandroid
|
||
end
|
||
#+END_SRC
|
||
|
||
And if there are more types than one, let’s ask the user.
|
||
#+BEGIN_SRC fish
|
||
case '*'
|
||
asktype
|
||
#+END_SRC
|
||
|
||
Let’s close our main switch statement.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
And finally, let’s delete our temporary file.
|
||
#+BEGIN_SRC fish
|
||
rm -f $undrivefile
|
||
#+END_SRC
|
||
|
||
* set-screens
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/set-screens
|
||
:CUSTOM_ID: set-screens-01bd989a
|
||
:END: ~set-screens~ is a small script that allows the user to automatically set up
|
||
an external monitor. First, let’s set some variables so we don’t have to type
|
||
in hidden places some values that should be easily modifiable.
|
||
#+BEGIN_SRC fish
|
||
set internal "eDP1"
|
||
set external "HDMI1"
|
||
#+END_SRC
|
||
|
||
Now, let’s set the ~DETECTEDSCREEN~ variable with a simple ~grep~. If the
|
||
variable turns out to be empty, this means the display was not detected.
|
||
However, if it’s not, then it will be an array with its second value that
|
||
holds the maximum resolution the display can handle. It needs to be passed
|
||
through ~awk~ in order to get only the resolution itself and not the refresh
|
||
rate, but once we’ve got that, we can set our external monitor as the main
|
||
monitor with its maximum resolution. i3 is also restarted in order to properly
|
||
display the wallpaper and Polybar on the new screen.
|
||
#+BEGIN_SRC fish
|
||
set externaldisplay (xrandr -q --current | grep -A 1 -i "$external connected")
|
||
if test -n "$externaldisplay"
|
||
set resolution (echo $externaldisplay[2] | awk '{$1=$1;print $1}')
|
||
xrandr --output "$external" --primary --auto --mode "$resolution" --right-of "$internal"
|
||
end
|
||
#+END_SRC
|
||
|
||
* Starwars
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/starwars
|
||
:CUSTOM_ID: Starwars-654f8637
|
||
:END:
|
||
This is a one-liner that allows you to watch Star Wars episode 4 in ASCII art
|
||
in your terminal. Here is the code:
|
||
#+BEGIN_SRC fish
|
||
telnet towel.blinkenlights.nl
|
||
#+END_SRC
|
||
|
||
* UpdateFlutter
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/UpdateFlutter
|
||
:CUSTOM_ID: UpdateFlutter-1e8fbeb7
|
||
:END:
|
||
This is a simple utility to be ran when the ~flutter~ package is updated.
|
||
#+BEGIN_SRC fish
|
||
sudo chown -R :flutterusers /opt/flutter
|
||
sudo chmod -R g+w /opt/flutter
|
||
sudo chmod a+rw /opt/flutter/version
|
||
sudo chown $USER:(id -g $USER) /opt/flutter/bin/cache
|
||
#+END_SRC
|
||
|
||
* Wacom setup
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/wacom-setup
|
||
:CUSTOM_ID: Wacom_setup-331fb024
|
||
:END:
|
||
I made a small and quick utility to set up my Wacom tablet so it is only bound
|
||
to one screen.
|
||
|
||
** Set our variables
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Wacom_setup-Set_our_variables-3cb6d58e
|
||
:END:
|
||
Let’s first declare our function that will be called to set our variables.
|
||
#+BEGIN_SRC fish
|
||
function set_device
|
||
#+END_SRC
|
||
|
||
We need some variables in order to correctly set our tablet. First, let’s get
|
||
declare what the name of our tablet is, and what the name of its touchpad is.
|
||
#+BEGIN_SRC fish
|
||
set -g DEVICE "Wacom USB Bamboo PAD Pen stylus"
|
||
set -g DEVICETOUCH "Wacom USB Bamboo PAD Finger touch"
|
||
#+END_SRC
|
||
|
||
We will also modify two settings: the speed of the cursor on the touchpad,
|
||
and the scroll speed. Let’s declare the name of these two settings.
|
||
#+BEGIN_SRC fish
|
||
set -g WACOMPROPTOUCHSPEED "Device Accel Velocity Scaling"
|
||
set -g WACOMPROPSCROLLPSEED "ScrollDistance"
|
||
#+END_SRC
|
||
|
||
To get the correct values for the area it can cover, we’ll need to reset our
|
||
tablet.
|
||
#+BEGIN_SRC fish
|
||
xsetwacom set "$DEVICE" ResetArea
|
||
#+END_SRC
|
||
|
||
Now we can get the X and Y areas.
|
||
#+BEGIN_SRC fish
|
||
set -l AREATOT (xsetwacom get "$DEVICE" Area)
|
||
set -g AREAX (echo $AREATOT | awk '{print $3}')
|
||
set -g AREAY (echo $AREATOT | awk '{print $4}')
|
||
#+END_SRC
|
||
|
||
Now let’s close our function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Select our screen
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Wacom_setup-Select_our_screen-7822c0c3
|
||
:END:
|
||
This function will allow us to select the screen on which the tablet will be
|
||
active. We can also select the option “desktop” so that all screens are
|
||
selected. Let’s declare our function.
|
||
#+BEGIN_SRC fish
|
||
function set_screen
|
||
#+END_SRC
|
||
|
||
First, let’s set what screens are available, including the desktop option.
|
||
#+BEGIN_SRC fish
|
||
set CONNECTED_DISPLAYS (xrandr -q --current | \
|
||
sed -n 's/^\([^ ]\+\) connected .*/\1/p') desktop
|
||
#+END_SRC
|
||
|
||
Now, let’s select the one we wish to use using rofi.
|
||
#+BEGIN_SRC fish
|
||
set -g SCREEN (for d in $CONNECTED_DISPLAYS
|
||
echo $d
|
||
end | rofi -dmenu -i -p "Select your dispaly" | tr -d '\n')
|
||
#+END_SRC
|
||
|
||
Now, let’s get the resolution of our selected screen.
|
||
#+BEGIN_SRC fish
|
||
set -l LINE (xrandr -q --current | if [ "$SCREEN" = "desktop" ]
|
||
sed -n 's/^Screen 0:.*, current \([0-9]\+\) x \([0-9]\+\),.*/\1 \2/p'
|
||
else
|
||
sed -n "s/^$SCREEN"' connected \(primary \)\{0,1\}\([0-9]\+\)x\([0-9]\+\)+.*/\2 \3/p'
|
||
end)
|
||
#+END_SRC
|
||
|
||
From that, let’s get the vertical and horizontal resolution of our screen.
|
||
#+BEGIN_SRC fish
|
||
echo $LINE | read -g WIDTH HEIGHT
|
||
#+END_SRC
|
||
|
||
If any of our =WIDTH= ou =HEIGHT= it empty, we’ll have to abort the script.
|
||
#+BEGIN_SRC fish
|
||
if test -z $WIDTH || test -z $HEIGHT
|
||
exit 1
|
||
end
|
||
#+END_SRC
|
||
|
||
Let’s close our function now.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Adjust the tablet
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Wacom_setup-Adjust_the_tablet-342acaf3
|
||
:END:
|
||
This function will take care of adjusting our tablet to our screen. Let’s
|
||
declare our function.
|
||
#+BEGIN_SRC fish
|
||
function adjust_device
|
||
#+END_SRC
|
||
|
||
If our screen is too high or too wide for our tablet, we will have to adjust
|
||
the height or width of the area used by the tablet. So let’s get the
|
||
theoretical new height and width of the area.
|
||
#+BEGIN_SRC fish
|
||
set RATIOAREAY (math ceil \($AREAX \* $HEIGHT \/ $WIDTH\))
|
||
set RATIOAREAX (math ceil \($AREAY \* $WIDTH \/ $HEIGHT\))
|
||
#+END_SRC
|
||
|
||
Now, if the current height of the tablet’s area is greater than the
|
||
theoretical new area, it means the current area is too high. Otherwise, it
|
||
should be the other way around. Let’s set =NEWAREAX= and =NEWAREAY= that will
|
||
be used to set the new area for the tablet.
|
||
|
||
#+BEGIN_SRC fish
|
||
if test $AREAY -gt $RATIOAREAY
|
||
set -g NEWAREAX $AREAX
|
||
set -g NEWAREAY $RATIOAREAY
|
||
else
|
||
set -g NEWAREAX $RATIOAREAX
|
||
set -g NEWAREAY $AREAY
|
||
end
|
||
#+END_SRC
|
||
|
||
Alright, now let’s set the new area with these new variables.
|
||
#+BEGIN_SRC fish
|
||
xsetwacom set "$DEVICE" Area 0 0 $NEWAREAX $NEWAREAY
|
||
xsetwacom set "$DEVICE" MapToOutput "$SCREEN"
|
||
#+END_SRC
|
||
|
||
Let’s slow down the cursor’s speed on the touchpad.
|
||
#+BEGIN_SRC fish
|
||
xinput set-float-prop $DEVICETOUCH $WACOMPROPTOUCHSPEED 0.5
|
||
#+END_SRC
|
||
|
||
Let’s also slow down the scroll speed of the touchpad.
|
||
#+BEGIN_SRC fish
|
||
xsetwacom set $DEVICETOUCH $WACOMPROPSCROLLPSEED "90"
|
||
#+END_SRC
|
||
|
||
Now, let’s close the function.
|
||
#+BEGIN_SRC fish
|
||
end
|
||
#+END_SRC
|
||
|
||
** Lauch the functions
|
||
:PROPERTIES:
|
||
:CUSTOM_ID: Wacom_setup-Lauch_the_functions-2ab8b4d9
|
||
:END:
|
||
Back to the main body of the script, we can now launch the functions
|
||
sequencially.
|
||
#+BEGIN_SRC fish
|
||
set_device
|
||
set_screen
|
||
adjust_device
|
||
#+END_SRC
|
||
|
||
* Weather
|
||
:PROPERTIES:
|
||
:HEADER-ARGS: :shebang "#!/usr/bin/env fish" :tangle ~/.local/bin/we
|
||
:CUSTOM_ID: Weather-4ed00bb0
|
||
:END:
|
||
A quick and useful script I often use is a ~curl~ request to [[http://v2.wttr.in/][v2.wttr.in]] to get
|
||
a weather forecast in the terminal. By default, I want the request to be about
|
||
the city I live in, but it is also possible for the script to accept as its
|
||
arguments a search inquiry.
|
||
#+BEGIN_SRC fish
|
||
if count $argv > /dev/null
|
||
set -l SEARCH (string join '+' $argv)
|
||
curl http://v2.wttr.in/~$SEARCH
|
||
else
|
||
curl http://v2.wttr.in/Aubervilliers
|
||
end
|
||
#+END_SRC
|